减少斑点并限制合成孔径雷达(SAR)图像中物理参数的变化通常是完全利用此类数据潜力的关键步骤。如今,深度学习方法产生了最新的现状,从而导致单位SAR修复。然而,现在经常可用巨大的多阶梯堆栈,并且可以有效利用以进一步提高图像质量。本文探讨了两种快速的策略,这些策略采用单像伪装算法,即SAR2SAR,在多个阶段的框架中。第一个是基于Quegan过滤器,并取代了SAR2SAR的局部反射率预估计。第二个使用SAR2SAR来抑制从“超级图像”的形式(即时间序列的时间算术平均值)形式的形式编码多个时间段信息的比率图像中抑制斑点。 Sentinel-1 GRD数据的实验结果表明,这两种多时间策略提供了改进的过滤结果,同时增加了有限的计算成本。
translated by 谷歌翻译
斑点过滤通常是分析合成孔径雷达(SAR)图像的先决条件。在单像伪装的领域取得了巨大进步。最新技术依靠深度神经网络来恢复SAR图像特有的各种结构和纹理。 SAR图像的时间序列的可用性提供了通过在同一区域结合不同斑点实现来改善斑点过滤的可能性。深度神经网络的监督培训需要无基真斑点图像。这样的图像只能通过某种平均形式,空间或时间整合间接获得,并且不完美。考虑到通过多阶段斑点滤波可以达到非常高质量的恢复的潜力,需要规避地面真相图像的局限性。我们将最新的自我监督训练策略扩展到了称为Merlin的单外观复杂SAR图像的情况,以进行多个颞滤波。这需要对空间和时间维度以及复杂幅度的真实组件和虚构组件之间的统计依赖性来源进行建模。使用模拟斑点上的数据集进行定量分析表明,当包括其他SAR图像时,斑点减少了明显改善。然后,将我们的方法应用于Terrasar-X图像的堆栈,并显示出优于竞争的多阶段斑点滤波方法。在$ \ href {https://gitlab.telecom-paris.fr/ring/multi-temporal-merlin/} {\ text {gitlab}} $上LTCI实验室,T \'El \'Ecom Paris Institut Polytechnique de Paris。
translated by 谷歌翻译